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Abstract

The faces of both adults and children can be classified accurately by sex, even in the absence
of sex-stereotyped social cues such as hair and clothing (Wild et al., 2000). Although much is known
from psychological and computational studies about the information that supports sex classification
for adults’ faces, children’s faces have been much less studied. The purpose of the present study was
to quantify and compare the information available in adults’ versus children’s faces for sex classifi-
cation and to test alternative theories of how human observers distinguish male and female faces for
these different age groups. We implemented four computational/neural network models of this task
that differed in terms of the age categories from which the sex classification features were derived.
Two of the four strategies replicated the advantage for classifying adults’ faces found in previous
work. To determine which of these strategies was a better model of human performance, we compared
the performance of the two models with that of human subjects at the level of individual faces. The
results suggest that humans judge the sex of adults’ and children’s faces using feature sets derived
from the appropriate face age category, rather than applying features derived from another age
category or from a combination of age categories. © 2001 Cognitive Science Society, Inc. All rights
reserved.

1. Introduction

Adults, children, and infants discriminate between male and female faces quickly and
accurately, (e.g., Burton, Bruce & Dench, 1993; Fagot & Leinbach, 1993; Intons-Peterson,
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1988). Our ability to categorize faces by sex is due presumably to the fact that the sex of a
face can be determined from reliable cues or features which we learn to apply to the task.
Within the general category of faces, however, there are a number of subcategories, including
race and age. Despite the relatively profound face structure differences characterizing
different facial subcategories, the sex of a face is a categorical distinction that remains
relevant across the subcategories.

An example of the perceptual implications of multiple coexisting subcategories of faces
in the context of perceiver experience can be found in O’Toole, Peterson and Deffenbacher
(1996). They demonstrated an “other-race” effect in a sex-classification task. Specifically,
O’Toole et al. found that both Caucasian and Asian observers showed an own-race accuracy
advantage when classifying faces by sex. This finding suggests that there may be differences
in the features that specify sex for faces of different races and/or in our ability to extract these
features efficiently from different categories of faces. Thus, sex categorization may interact
with other subcategorical distinctions in faces, such as race, and possibly also with the
experience of the observer.

Considering the subcategory of face age, Wild, Barrett, Spence, O’Toole, Cheng and
Brooke (2000) investigated first-graders’, third-graders’,1 and adults’ ability to classify
adults’ and children’s faces by sex in the absence of sex-stereotyped cues, such as those
found in hairstyle and clothing. Previous studies have shown that when these cues are
present, infants as young as 9 months of age are able to categorize pictures of males and
females (Fagot & Leinbach, 1993; Cornell, 1974). Without sex-stereotyped cues, however,
the task becomes more difficult. Wild et al. trimmed the faces of 7 to 10 year old children
and young adults to exclude these cues. They found that all observers categorized the adults’
faces accurately, but that only the third graders and adults categorized the children’s faces at
above-chance levels of accuracy. In addition, both children and adults classified adults’ faces
more accurately than children’s faces. This result suggests that the sex information in
children’s faces may be less reliable or different than the sex information in adults’ faces. In
addition, even though adults’ faces were categorized by sex more accurately than children’s
faces, adults’ and children’s faces wererecognizedequally accurately (Wild et al., 2000).
This finding indicates that children’s faces are not generally less informative than adults’
faces, but rather, are less informative on the dimension of sex.

The psychological finding that children’s faces are categorized by sex less accurately than
adults’ faces is consistent with anthropological measures of male and female children and
adult faces. These data indicate that there are a number of skeletal structure differences
between the faces of male and female adults (Enlow, 1982). For example, the craniofacial
shape of adult males tends to be longer and less round than the shape of adult females.
Additionally, on average, adult males have a larger nose and a broader forehead (Enlow,
1982). In contrast, Enlow claims that the faces of boys and girls before puberty are
essentially comparable. So according to the anthropological literature, skeletal face structure
cannot be used to distinguish between the faces of boys and girls.

From a perceptual standpoint, nonetheless, it seems clear that there is sufficient informa-
tion in the faces of children to enable accurate sex classification. There is evidence for this
claim both from the behavioral results of Wild et al. (2000) and from a morphing technique
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developed by Yamaguchi, Hirukawa and Kanazawa (1995) to show the global structure
differences between Japanese male and female faces. They created prototypical male and
female faces by morphing together pairs of same-sex faces. They continued by morphing
pairs of morphs together until a male and a female prototype were created. Wild et al. (2000)
applied this technique to children’s faces to obtain a prototypical boy face and a prototypical
girl face (see Fig. 1). The prototypes clearly show a male-female difference that seems
readily detectable.

Given the lack of skeletal differences between boys’ and girls’ faces, and the finding of
accurate classification and distinguishable prototypes of human observers, how do we
distinguish boys’ and girls’ faces? How does this relate to the way we distinguish men’s and
women’s faces? A prerequisite to addressing these questions is to determine how the
sex-linked information in children’s faces relates to the sex-linked information in adults’
faces. The information in children’s faces may be a subset of the information in adults’ faces,
with perhaps only hormonally-based differences in tissue and fat rather than both hormonal
and skeletal structure differences. It is possible also that the information in adults’ faces is
an exaggerated or caricatured version of the information in children’s faces. At the extreme,
it is possible that the information for determining the sex of children’s faces is completely
different than the information in adults’ faces.

Fig. 1. Girl (left) and boy (right) prototypes created by morphed averaging.
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Computational modeling is an effective tool for analyzing the quality and nature of the sex
information in faces. Although there have been numerous computational and neural network
studies of sex classification with adults’ faces (for reviews, see Valentin, Abdi, Edelman &
O’Toole, 1997; O’Toole, Vetter, Volz & Salter, 1997), there are no analogous studies of
children’s faces. In this paper, we used computational learning models to compare the quality
and nature of the sex information in adults’ versus children’s faces. We did this by manipulating
the training and testing sets of the computational models in ways we will describe shortly.
We were then able to compare the performance of models implemented in different ways
with the performance of human subjects on the same task and with the same faces.

The primary challenge in designing computational models that are useful for comparing
the sex information in adults’ and children’s faces is to formulate training and test sets that
can be used to compare the alternative hypotheses. To the best of our knowledge, this study
represents the first attempt to apply computational models to the analysis of children’s faces.
As such, for children’s faces there is no literature to guide the design of the models. We have,
therefore, formulated our models along the most basic logical dimensions. If the sex
information in adults’ and children’s faces is similar, one would expect that the information
learned from either set of faces would generalize well to the other set of faces. If, on the other
hand, the sex information for adults’ and children’s faces is very different, we would expect
little generalization between face sets. Finally, if the information in one set of faces is a
subset or superset of the information in the other set of faces, we might expect a partial
transfer of learning between the face sets.

From this logic, we implemented the following four simulations in which we varied the
derived feature sets used for sex classification. In theadult feature strategy, a feature set for
sex classification is derived from adults’ faces and applied to classify both adults’ and
children’s faces. This strategy has intuitive appeal based on the anthropological literature
which suggests that the sex information in adults’ face structure may be a superset of the sex
information in children’s faces. Thus, skeletal structure differences may emerge after pu-
berty, complementing and enhancing the tissue and fat differences already there. The adult
feature model would predict better performance for adults’ faces because the derived feature
set will be tailored to adults’ faces. The model may also perform adequately on children’s
faces if at least a subset of the adult information is informative for sex classification of the
children’s faces. However, this strategy might rely on some features that would be irrelevant
and potentially misleading when applied to children’s faces.

In the child feature strategy, the sex classification features are derived from children’s
faces. Because the features are optimal for children’s faces, this model is unlikely to
duplicate the pattern of results from Wild et al. (2000). Notwithstanding, there is a particular
situation that could lead to better performance for adults’ faces, even though the sex
classification features are derived from children’s faces. Specifically, if the sex information
in adult’s faces is a caricatured or exaggerated version of the same sex information in
children’s faces, the model may perform more accurately for adults’ faces. In other words,
if the model learns the more difficult task of classifying children’s faces, adults’ faces might
prove easier than the children’s faces.

In the combinedfeature strategy, the sex classification feature set is derived from a
combination of adults’ and children’s faces. This strategy seems reasonable because people
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see faces of all ages in their everyday experience. Thus, we may learn to classify faces by
sex using the information encoded from a combination of faces of all ages, making a
compromise between the information useful for adults’ versus children’s faces. In addition,
this is a parsimonious strategy for making use of both the adults’ and children’s faces in
deriving the feature set, because only one set of features is needed to encode both the adults’
and children’s faces. It is difficult to predict performance for this model. On the one hand,
we might expect better performance for adults’ faces during test because the behavioral data
suggests that adults’ faces are more informative than children’s faces. On the other hand,
although features derived from this strategy may conveniently exploit the common elements
of the sex information in adults’ and children’s faces, some of these features may be
inappropriately applied to faces of different ages.

In the separatefeature strategy, two separate feature sets are derived from adults’ and
children’s faces, respectively. In this case, a feature set is applied only to the appropriate age
group of faces. This model instantiates the hypothesis that humans maintain separate feature
sets for classifying different subcategories of faces by sex. From a computational viewpoint,
if there are systematic differences in the information available for sex classification of adults’
versus children’s faces, the separate feature strategy is optimal because it takes this differ-
ence into account explicitly. The optimal computational strategy, however, does not neces-
sarily underlie human performance. It has been suggested that the well-known “other-race
effect” for face recognition is the result of misapplying features useful for describing
own-race faces to the representation of other-races faces (Malpass & Kravits, 1969; Shep-
herd, Davies & Ellis, 1981; O’Toole, Deffenbacher, Valentin & Abdi, 1994). Similar
arguments have been applied to native versus non-native language learning (Kuhl, Andruski
& Chistovich, 1997; Werker & Tees, 1984a,b).

In summary, in the adult feature strategy, the sex classification task is learned from adults’
faces. In the child feature strategy, the task is learned from children’s faces. In the combined
feature strategy, the task is learned from a combination of adults’ and children’s faces. Finally,
in the separate feature strategy, the task is learned separately for adults’ and children’s faces.

In the present study, we first present simulations of the four strategies for comparison with
the pattern of results found in Wild et al. (2000). Two of these strategies yielded results
consistent with human performance. Next, to determine which of the two consistent strategy
models was a better predictor of human performance, we evaluated model and human
performance at the level of individual faces. An experiment with human participants was
conducted to obtain classification accuracy for the individual children’s faces used in the
simulations. Performance on individual faces was then used to assess the accord between
each strategy and the performance of human observers.

2. Methods

2.1. Stimuli

Two sets of face stimuli were used to train and test the computational models. The first
set of faces included 100 full-face images (50 Caucasian adults and 50 Caucasian children)
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that were edited digitally to exclude the neck and clothing. Both the adults’ and children’s
face sets comprised equal numbers of male and female faces. The adults’ faces were of
people in their twenties. The children’s faces were of boys and girls between the ages of
seven and ten years old. A second face set was created from the same 100 faces, by cropping
each face to exclude most of the hair. All pictures were 2563 256 pixel digital images with
a resolution of 256 gray levels per pixel. Examples of the stimuli are displayed in Fig. 2.2

2.2. Procedure

The computational procedures used in the present study have been applied in several other
studies on adults’ faces, with complete details presented in these other papers (Abdi,
Valentin, Edelman & O’Toole, 1995; O’Toole, Vetter, Volz & Salter, 1997). In the present
study, we give only an overview of the procedures in the body of the paper. However, for
completeness, we have included an appendix with details and equations for each of the
computational simulations.

All simulations employed the same general method. Each involved: 1) using principal
component analysis (PCA) to extract a face representation; 2) applying this representation to

Fig. 2. Sample male (left) and female (right) faces edited to exclude hair and clothing cues.

824 Y.D. Cheng et al. / Cognitive Science 25 (2001) 819–838



training a perceptron to classify faces by sex; and 3) testing the classification accuracy of the
perceptron with a 2-alternative forced choice procedure.

2.2.1. Principal component analysis approach
To extract a face representation, we applied PCA to a set of face images. This process is

illustrated schematically in Fig. 3. This yields a set of orthogonal principal components
(PC’s) or eigenvectors with which the set of faces can be described. The PC’s are derived
from the statistical structure of the faces and can be ordered according to the proportion of
variance they explain in the data. Individual faces from the set can be reconstructed exactly
as a weighted combination of the PC’s. As such, PC’s have been considered analogous to
“features” (Abdi, 1988; O’Toole, Abdi, Deffenbacher & Valentin, 1993; Turk & Pentland,
1991) and the weights or coordinates needed to reconstruct a face have been considered
feature values. From a geometric point of view, these “features” define the dimensions of a
multidimensional “face space” (see also Valentine, 1991), in which individual faces are
represented as points in this space. Their position in the space is defined by the coordinates
(weights) of their projections onto the eigenvectors. We will refer to this representation

Fig. 3. Schematic presentation of the PCA on faces.
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henceforth as a “face coordinate vector.” In summary, the PCA is used to derive a repre-
sentation of faces that is dependent on the statistical structure of the faces to which it is
applied. In this study, one hundred face images were used to derive the PCs, and conse-
quently, the face coordinate vectors in the combined feature simulation. Fifty face images
were used to derive the PCs and the face coordinate vectors for all other simulations.

2.2.2. Linear perceptron classifier
Face coordinate vectors derived from the PCA were used to train two-layer linear

perceptrons to classify faces by sex (21 5 female,11 5 male).3 This process is illustrated
schematically in Fig. 4. In all cases, the data reported for the sex classification task are from
faces that were not used to train the perceptron. In other words, the data represent the ability
of the perceptron togeneralizethe sex information learned from a set of faces to classify a
(some) novel face(s). For all simulations, the performance of the perceptron model was
evaluated with a two-alternative forced choice (2AFC) test using all possible pairs of 25 male
and 25 female faces (625 trials). More specifically, for each trial, two novel face coordinate
vectors, one male and one female, were input to the trained perceptron and the output
activations were computed. A correct response was recorded when the activation for the male
face exceeded the activation for the female face. Each data point on the graphs, therefore,
represents the proportion of correct responses computed across 625 test trials.

When the perceptron was trained and tested with face coordinate vectors from a single age
group, (e.g., training and testing with adults’ faces), the generalization performance of the
perceptron was assessed using a “leave-two-out” cross-validation procedure (also called
“jackknife”). This procedure was used to make sure that the largest possible sample of novel

Fig. 4. Schematic presentation of the perceptron sex classifier.
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faces was available for test. The cross validation technique was applied in the following
manner. The perceptron was trained on 48 faces (24 male and 24 female faces) out of a total
of 50. The perceptron was then tested with the two left-out faces (one male and one female)
using the 2AFC procedure described previously. All possible pairs of left-out male and
female faces were tested systematically, for a total of 625 trials. When the perceptron was
trained and tested with face coordinate vectors of different age faces, (e.g., training with
adults’ faces and testing with children’s faces), the cross validation procedure was not
necessary because none of the test faces were in the training set.

Similar to O’Toole et al. (1993) and Valentin, Abdi and Edelman (1994a), we evaluated
sex classification performance as a cumulative function of subspace dimensionality by
varying the number of eigenvectors used to represent the faces. This was done by training a
different set of perceptrons for each subspace. By systematically varying the subspace
dimensionality, a more complete picture of the performance of the model is available. An
important difference between the present simulations and past work with adults’ faces was
that we trained all models using faces with hair, but tested using faces without the hair. We
did this because we think it best approximates the circumstances in which humans learn the
task of sex classification and the circumstances under which psychologists generally test
performance. Thus, we typically encounter people in the real world with hair styles that are
common for their sex. In comparing our data to the psychological literature on sex catego-
rization of faces, including Wild et al. (2000), faces have been edited to eliminate hairstyle
as a cue to sex.

Before proceeding, we note that although the number of faces available may seem small,
it has been demonstrated previously (Valentin, Abdi & O’Toole, 1994b; Valentin, Abdi,
Edelman & O’Toole, 1997) that the gender of faces can be estimated robustly for adult faces
with a similar technique using as few as 10 eigenvectors. These eigenvectors, in turn, are
reliably estimated from a similarly small number of faces (Abdi, Valentin & O’Toole, 1997).
This is understandable in terms of the large eigenvalues (i.e., proportion of explained
variance) associated with gender information in PCA of faces (e.g., O’Toole, Abdi, Deffen-
bacher & Valentin, 1993). A related technical point concerns the problem of overfitting with
the perceptron. This problem is eliminated in the present study by using a sex classification
generalization task (i.e., a jackknife). This guarantees that the level of performance cannot
be attributed to overfitting.

2.3. Simulations

We implemented the four feature strategies by varying the training sets and test sets. First,
PCA was applied to a set of faces. Second, the face coordinate vectors of these faces were
computed in the PCA space. Third, a subset of these coordinate vectors was used to train a
perceptron sex classifier. Fourth, the perceptron model was tested with coordinate vectors
from novel faces using the 2AFC task. Finally, each simulation was performed once for each
cumulative subspace dimensionality, incrementally increasing the number of eigenvectors
used in representing the faces.
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2.3.1. Simulation 1: adult feature strategy
We applied PCA to the adult face set. The face coordinate vectors of the adults’ faces were

then computed and used to train a perceptron sex classifier. We then tested the perceptron
with novel adults’ and childrens’ faces using the 2AFC procedure. The proportion correct for
the adults’ versus children’s test faces, as a function of subspace dimensionality, is displayed
in Fig. 5a. The perceptron’s performance for the adults’ and children’s faces stabilizes at
approximately 90% and 70% correct, respectively. The overall level of performance for the
model is good and compares favorably to most other models in the literature (for reviews see
Abdi, Valentin, Edelman & O’Toole, 1995; O’Toole, Vetter, Volz & Salter, 1997). This is
especially true given the two added constraints of transferring learning from faces with hair
to faces without hair, and transferring learning between age groups. To our knowledge, this
is the first computational model which tests sex classification of faces across a “hair to no
hair” transfer condition. For present purposes, the most important aspects of the data can be
seen in Fig. 5a. Here it is clear that, with the exception of the first subspace dimensionality,
the accuracy for adults’ faces is consistently higher than for children’s faces as was the case
for human subjects (Wild et al., 2000).

2.3.2. Simulation 2: child feature strategy
This simulation was implemented using the procedure described for Simulation 1, except

that in this case children’s faces served as the training set. The results of Simulation 2 are
displayed in Fig. 5b. The figure indicates that classification accuracy for adults’ and
children’s faces peaks at approximately 65% and 85% correct, respectively. In summary, the
perceptron classifies children’s faces more accurately than adults’ faces and is therefore
inconsistent with the human behavioral data.

2.3.3. Simulation 3: combined feature strategy
We applied PCA to the combined set of adults’ and children’s faces (total of 100 faces)

and used the resultant face coordinate vectors to train the perceptron sex classifier. Again, the
perceptron was tested with novel adults’ and children’s faces. The results are displayed in
Fig. 5c. For subspace dimensionalities up to about ten eigenvectors, the perceptron classified
adults’ and children’s faces at roughly equivalent levels of accuracy. After the first ten
eigenvectors, children’s faces were classified more accurately than adults’ faces. Accuracy
peaked at approximately 68% and 82% correct for the adults’ and children’s faces, respec-
tively. The model is, therefore, inconsistent with the human behavioral data.

2.3.4. Simulation 4: separate feature strategy
We applied two separate PCA’s to the adults’ and children’s faces. The resultant face

coordinate vectors were used to train two separate perceptron sex classifiers, one using the
adult feature set and the other using the child feature set. In essence, this simulation is made
of the adult face test condition from Simulation 1 (see Fig. 5a) and the children’s face test
condition from Simulation 2 (see Fig. 5b). These conditions appear replotted for comparison
in Fig. 5d. Although performance on the first few eigenvectors was generally better for
children’s faces than adults’ faces, once performance stabilized, adults’ faces were classified
more accurately than children’s faces. At its peak, the perceptron classified adults’ and

828 Y.D. Cheng et al. / Cognitive Science 25 (2001) 819–838



children’s faces at approximately 90% and 85% correct, respectively. Overall, as expected,
the separate feature model produced the most accurate performance, Additionally, adults’
faces were classified by sex more accurately than children’s faces, and so the separate feature
strategy is consistent with the performance of human subjects.

2.3.5. Simulation discussion
From the simulations we can make some general statements about the relationship

between the sex information in adults’ and children’s faces. First, given that the performance
of the simulations was well above chance in all of the face age transfer conditions, we can
eliminate the extreme hypothesis that there is no shared sex information in adults’ and
children’s faces. Second, at the other extreme, there was always a cost associated with
transferring sex classification between learning and testing conditions across age groups in
the simulations. Thus, we can rule out the somewhat trivial possibility that the sex infor-
mation for adults’ and children’s faces is equivalent.

Before discussing the models that were consistent with the psychological data, some
useful points can be made from the two models that were eliminated. One might argue that

Fig. 5. Simulation results for a.) the adult-based feature strategy; b.) the child-based feature strategy; c.) the
combined feature strategy; and d.) the separate feature strategy. The adult face advantage appears for the
adult-based and separate strategies.
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the task of learning to classify faces by sex is acquired during childhood and thus might be
strongly influenced by the information available in the faces of other children. However, the
child feature strategy did not reproduce the advantage for adults’ faces. In addition, the
results of Wild et al. (2000) indicate that even young children show this advantage for adult’s
faces. Thus, we can conclude that children’s faces do not form the basis of our learned
knowledge about the sex of faces.

When there is consistent information for making categorical decisions in overlapping
categories, a parsimonious approach to the problem would be to combine this information in
an optimal way to operate across categories. The performance of the combined feature model
on adults’ and children’s faces in low subspace dimensionalities was roughly equivalent.
From a performance point of view, this finding suggests that a compromise encoding of
adults’ and children’s faces is indeed possible. However, beyond low subspace dimension-
alities, children’s faces were classified more accurately than adults’ faces. Thus, the model
performance is inconsistent with the experimental results for all of the subspace dimension-
alities tested. The combined feature simulation indicates that forcing the model to settle on
a feature set that optimally classifies both the children’s and adults’ faces does not reproduce
the classification advantage for adults’ faces seen in the psychological data. It is perhaps
worth noting, also, that overall the combined model did not achieve better performance than
the other models. This suggests that in settling on an encoding suitable for both children’s
and adults’ faces, some features useful for only one age group of faces may be applied
inappropriately to the other age group of faces. This can happen in the combined model
because of the importance of explained variance,relative to the statistical structure of the
training set, in determining the feature set (e.g., eigenvectors) derived from the PCA. When
faces from both age groups comprise the training set, and when the importance of individual
features for the two age groups is not equivalent, the model will converge on a compromise
that may over- or underweight these features for one or both age groups in the classification
decision.

The adult feature strategy produced data consistent with the general pattern of perfor-
mance found in human subjects. This strategy instantiates the hypothesis that there is shared
information for classifying adults’ and children’s faces by sex and that a useful subset of this
information can be extracted from adults’ faces. This strategy produced above chance
performance for both adults’ and children’s faces and performed more accurately for adults’
faces. Thus, it is possible that adults’ faces could form the basis of the feature set we apply
to classifying the sex of children’s faces.

The separate feature strategy represents a rather different approach to the problem, but
also produced data that were generally consistent with human performance. While allowing
for the possibility that there is shared sex information for adults’ and children’s faces, the
separate feature model does not make explicit use of this information, Thus, this strategy is
tailored to serve the perceptually divergent needs of conceptually unified categorizations that
must be carried out in different subcategories. Simply put, although the gender concept may
be a consistent and unified idea applicable to faces of all ages, the perceptual problem of
determining gender from faces within different age categories may be solved in a less unified
way.
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3. Human experiment

Human subjects from Wild et al. (2000) classified adults’ faces more accurately than
children’s faces. The adult and separate feature models were consistent with these data. The
next logical step was to determine which of these strategies is a better model of human
performance. To do this, we evaluated the performance of these models at the level of
individual faces. This enabled us to compare the pattern of errors that the models and human
subjects make. In other words, are the model and humans erring on the same faces or on
different faces? This enabled us to distinguish between the remaining two models that are in
general agreement with the human data.

We conducted an experiment with human subjects classifying children’s faces by sex.
Only children’s faces were used, because the data of Wild et al. (2000) indicated nearly
perfect accuracy for classifying the adults’ faces. This obviously limits the ability of adults’
faces to provide individual face predictions that will help us decide between the two models.
Note that the purpose of this experiment was to gather data on the accuracy with which
individual faceswere classified by sex.

3.1. Participants

Thirteen undergraduates (6 female and 7 male) from the University of Texas at Dallas
volunteered to participate in the experiment. All subjects received one experimental credit
required by a core course in the psychology program.

3.2. Stimuli

The stimuli consisted of the 50 children’s faces used in the simulations as test faces. Note
that these were faces without hair, (see Simulation Methods for details).

3.3. Procedure

Participants were asked to classify all 50 faces by sex. The faces were presented one at a
time on a computer screen. Each face remained on the screen until the subject pressed one
of the labeled keys (male or female) on the computer keyboard. The order of face presen-
tation was randomized for each observer. All experimental events were controlled by a
Macintosh computer programmed with Psyscope (Cohen, McWhinney, Flatt & Provost,
1993).

4. Human experiment results

The results were analyzed in two ways. First, for comparison with the data of Wild et al.
(2000), we analyzed the accuracy of the human participants, collapsing across the individual
faces. Second, and more directly relevant for the present study, we analyzed accuracy for
individual faces, collapsing across the individual participants.
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4.1. Participant analysis.Sex classification accuracy was measured for each observer using
A9 for discriminating male and female faces. The statisticA9 (a nonparametric version of the
signal detection measure of d9) was appropriate for two reasons. First, both Wild et al. (2000)
and Intons-Peterson (1988) found a consistent response bias for guessing “male.” We will
consider this bias in more detail in the next section. For present purposes, a bias-free measure
was needed to get a clear picture of discrimination accuracy. Second,A9 was used by Wild
et al. because of the relatively high accuracy they had for the classification of adults’ faces.4

Although not as much of a problem with the children’s faces, we usedA9 for comparability
with that study.

TheA9 score was calculated based on “hits,” defined arbitrarily as the response “female”
to female faces, and “false alarms” defined as the response “female” to male faces. Overall
accuracy for classifying the children’s faces by sex was reasonably good,A9 5 0.85, and
roughly comparable to the analogous condition in Wild et al. (2000),A9 5 0.77. Slight
differences in performance may be due to the use of different face sets.

We also found a bias for responding “male,” as evidenced by the average criterion across
individual participants, which was significantly greater than zero,C 5 0.43, t 5 6.88,p ,
.001. A positive C score indicates a bias to respond “male” and a negative score indicates a
bias to respond “female.” This bias was quite consistent with all but one of the participants
having a positive C value. Overall, 61.9% of the responses were “male.” The sex of the
participant was not related to the magnitude of the response bias,F(1,11), 1, MSe 5 0.55.

4.2. Face analysis.The face analysis proceeded as follows. The average percentage correct
was calculated for each face collapsing across individual participants. Note that our design
does not allow the computation of a bias-free measure (such asA9) or criterion (such asC)
for individual faces because each face has a single determined sex and thus cannot serve both
as signal (e.g., female) and noise (e.g., male). However, a response bias is still present in the
data and manifests itself in the generally better performance for male (88.6% correct) versus
female (64.5% correct) faces. This difference was significant,F(1,48)5 12.89,MSe 5 0.649,
p , .001. We note this lack of a bias-free measure for individual faces because it has
implications for how we implemented the human-model individual face comparison.

5. Model performance on individual faces

Given a measure of human accuracy on each face, the next step was to extract a measure
of model classification accuracy for each face. Recall that the simulation models were tested
with a 2AFC task in which a novel male and female face were input to the perceptron and
the activations of the output unit were compared. The classification decision was considered
correct if the activation for the male face exceeded the activation for the female face. This
yielded a percentage correct across faces that was based on the bias-free 2AFC task.
Although this measure is comparable to the bias-freeA9 computed by Wild et al. (2000) for
human observers, it is not a measure that can be used with individual faces. We proceeded,
therefore, to formulate a measure that was more analogous to the human task of deciding if
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an individual face is male or female. We describe this method in general terms first, and then
apply it to the individual model comparisons.

Model accuracy for the individual children’s faces was measured by computing the
perceptron activations for each novel test face and comparing these activations to a threshold
or criterion activation. Faces with activations above the criterion were classified as male,
whereas faces with activations equal to or below the criterion were classified as female. The
criterion activation was set at a level comparable to the male response bias found in the
human experiment. This was done by noting the average activation for male faces and for
female faces and by bisecting this to achieve the ideal observer criterion.5 From here, the
model criterion was shifted in the male bias direction until the overall performance rates
matched those found with the human participants for male and female faces.

More specifically, accuracy for individual children’s faces was tested for the adult feature
strategy and the separate strategy for all 50 faces, presented as novel to their respective
perceptrons. The subspace dimensionality tested for the perceptrons was set to 18 eigenvec-
tors, the point at which the model performance was stable for all four simulations.6 This
yielded a correctness value (1 or 0) for each face, for each feature strategy.

6. Model versus human results

Our goal was to compare the pattern of errors for the two feature strategies to the pattern
of errors made by human subjects. Separate ANOVA’s were carried out on the adult and
separate feature strategy data using the model correctness as a predictor of the human
performance on the individual faces. The results indicated that the separate feature strategy
proved a reliable predictor of human accuracy,F(1,48) 5 4.68, MSe 5 0.057,p , .05,
whereas the adult feature strategy did notF(1,48) , 1, MSe 5 0.063. To get a better
perspective on the strength of the model-human relationship for the two strategies, we
compared the model-human correlation for accuracy on individual faces to the average
correlation between the individual subjects for accuracy on individual faces. For the separate
feature strategy, we obtained a correlation coefficient ofr 5 0.30, p , .05, between the
model and human performance on the individual faces. To compare this correlation to the
consistency of individual participants, we computed the average correlation among error
patterns for all possible pairs of participants. The result was an average correlation ofMr 5
.29, with a standard deviation of .02. Thus, the correlation between the separate feature
strategy and human performance, though moderate in size, was about equal to the correlation
between individual participants. By comparison, for the adult feature strategy, we obtained
no correlation between the model and human performance on the individual faces,r 5 .01.

Finally, it is perhaps worth noting the difficulty of discriminating boys’ and girls’ faces
without the presence of sex-stereotyped cues. This is best illustrated by considering human
percentage correct scores for the individual faces. In fact, only about 20% of the 50 faces
were always classified correctly. At the other extreme, between 5 to 10% of the faces were
consistently misclassified. In all cases, these were girls who were misclassified as boys. In
between we found accuracy values that varied across the spectrum. These data illustrate that
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classifying children’s faces without sex-stereotyped cues is a difficult task that varies
considerably as a function of individual faces.

7. General discussion

The first purpose of this study was to quantify and compare the information available in
adults’ and children’s faces for sex classification. The simulations eliminated the two
extreme hypotheses of complete overlap and no overlap in the sex information in adults’ and
children’s faces, indicating that there is shared information for sex categorization for these
age groups. This evidence can be found in the results of the adult and child feature
simulations, both of which showed above-chance sex classification generalization to the face
age category that was not learned. The best overall performance for children’s and adults’
faces, however, was achieved in the separate feature strategy, in which the features were
tailored to the appropriate age group of faces. The superior performance of the model on
adults’ faces in this case indicates that the information for sex classification in adults’ faces
is inherently more reliable than the information in children’s faces.

The second purpose of the study was to evaluate the four feature strategies as psycho-
logical models of human performance on the task of classifying adults’ and children’s faces
by sex. The data of Wild et al. (2000) indicate that sex classification accuracy was better for
adults’ faces than for children’s faces. In evaluating the simulations as psychological models
of sex classification, although all four models performed the tasks at levels above chance,
only the adult feature strategy and the separate strategy reproduced the advantage for adults’
faces found in human subjects (Wild et al., 2000). The child feature strategy and the
combined models were inconsistent with the psychological data.

The two models that were consistent with the psychological data, (i.e., the adult feature
and the separate feature models), make use of rather different feature generalization strate-
gies. The adult feature model generalizes features nonoptimally, but can operate with a single
set of features. As noted previously, the other-race effect has been hypothesized to be caused
by the application of a statistically inappropriate feature set for encoding faces. The simu-
lations indicate that generalization from adults’ to children’s faces works reasonably well and
produces data that are consistent with psychological data showing a classification advantage
for adults’ faces. The separate feature model does not require generalization, but employs
two sets of noninteracting features. The superior performance of this model on adults’ faces
can be accounted for by the inherent reliability of the sex information in adults’ versus
children’s faces, without recourse to more complicated processing theories for making use of
the shared information.

The general agreement between the psychological data and these two rather different
feature generalization strategies led us to look more closely at human performance on the
task. Using the pattern of errors on individual faces, we found that the separate feature
strategy provided a better fit to human data. Thus, the models suggest that human perfor-
mance is best fit by a processing strategy that is optimized separately within subcategories.
The separate model’s accord with the human data at the level of individual faces suggests
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that human errors for classifying faces by sex do not have their source in the misapplication
of age inappropriate sex-related features. Although less parsimonious than the other three
models tested, which achieve classification with a single unified set of features, this model
is better in terms of overall performance and better predicts human classification errors on
individual faces. The separate model also suggests that sex and age classification may be
linked in an interesting way, implying that age classification may precede sex classification.

In the broader context, faces constitute an important and highly meaningful category of
objects. This category is further subdivided into multiple and overlapping subcategories
based on the sex, race, and age of faces. These are socially meaningful categories that one
detects through perceptual processes. Although sex, race, and age share similarities as
visually-derived semantic “categories” of faces (Bruce and Young, 1986), the information
that specifies a face’s status with respect to these dimensions interacts dynamically over time.
As we age, the quality, the quantity, and the form of the gender-specifying information in our
face changes. The markers of age are also dynamic and may be categorical for some age
distinctions and more continuous for other distinctions. Understanding the complexities of
the perceptual information that specifies category membership, and the relationship among
multiple coexisting categories, is a prerequisite to sorting through plausible theories of the
ways in which humans perform these tasks.

Notes

1. The first-graders were between 6 and 8 years old, and the third-graders were between
8 and 10 years old.

2. We included only example stimuli from adults’ faces because permission was not
requested from parents to publish the children’s faces. However, the children’s faces
were processed and presented in exactly the same manner as adult faces.

3. The perceptron is a simple linear deterministic neural network that reaches a unique
solution (Abdi, Valentin & Edelman, 1999). Strictly speaking, we have used a linear
hetero-associator, but the term perceptron is generally used when the predicted values
are binary (see Abdi, 1994).

4. At high levels of performance, the nonlinearities ofd9 can give a distorted view of
difference between conditions.

5. This corresponds to the ideal observer as defined by signal detection theory (cf. Green
& Swets, 1966).

6. We also explored neighboring subspace dimensionalities with similar results. Note that
beyond 20–25 eigenvectors, overfitting became a factor for some of the perceptrons.

Acknowledgments

Thanks are to the National Institutes of Standards and Technology for providing support
to A.J. O’Toole and Y.D. Cheng during the completion of this project.

835Y.D. Cheng et al. / Cognitive Science 25 (2001) 819–838



Appendix

In this appendix we give a formal description of the techniques used in the simulations.
We start with a set ofK 5 2N digitized face images with half of the faces being male and

half being female. Each face image is represented by the column vector of theI pixel light
intensities (e.g., a 2562 vector). The set of face images is therefore anI 3 K matrix denoted
X.

The first step is to obtain the singular value decomposition ofX as

X 5 PDQÁ with: PÁP 5 QÁQ 5 I (1)

whereP (respectivelyQ) is the matrix of the left (respectively right) singular vectors ofX,
and D is the diagonal matrix of the singular values ofX. Because bothP and Q can be
obtained using the technique of eigendecomposition, they are frequently called eigenvector
matrices in the PCA literature. The matrixQ gives also the (normalized) projections of the
faces onP (because,Q 5 XÁPD21, see for more details, e.g., Abdi, 1988; Abdi, Valentin
& Edelman, 1999).

For a given simulation we set the number of projections (i.e., the number of eigenvectors)
that we want to keep. Call this numberL. The face coordinate vectorswill correspond to the
first L columns ofQ. TheK 3 L matrix storing the face coordinate vectors is calledV. It is
formally defined as

V 5 @vk,l# 5 @qk,l# for k 5 $1· · ·K%, andl 5 $1· · ·L%. (2)

The learning set of faces is composed ofK 2 2 faces (the originalK faces minus one male
face and minus one female face). The 2 faces not present in the learning set are used to test
the performance of the model. Assume that the male (respectively female) face is them-th
face (respectivelyf-th face), and that the corresponding row face vectors are denotedmÁ and
fÁ. The set of the learned face coordinate vectors is stored in a matrix denotedV learnand the
2 face coordinate vectors for the test faces are stored in a matrix denotedVtest. Formally, this
is equivalent to partitioning the matrixV as:

V 5 F V learn

V test
G , with: V test5 F mÁ

fÁ G . (3)

The perceptron (or discriminant analysis) learning technique is implemented by associ-
ating to the learn faces a dummy sex vectors. The value of the elements ofs is 11 for males
and21 for females. Learning is equivalent to predictings from V learn. This boils down to
finding a vector of weights, denotedw such that

ŝ 5 V learnw
Á with ~ŝ 2 s!Á~ŝ 2 s! being minimum. (4)

This is obtained as

w 5 V learn
1 s 5 V learns ~becauseVÁV 5 I , and thereforeV1 5 VÁ!, (5)

(with V learn
1 being the More-Penrose pseudoinverse ofV learn). The next step is to compute the

predicted values (or activation in a neural network framework) of the dummy sex indicator
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as

ŝtest5 F ŝmale

ŝfemale
G 5 F mÁw

fÁw G 5 F mÁ

fÁ Gw 5 V testw. (6)

We then use the values ofŝtest to predict the sex of the test faces with the following rule: If
ŝmale $ ŝfemale, then the male face is identified as a male and the female as a female. This
corresponds to a correct classification. If, on the contrary,ŝmale, ŝfemale, then the male face
is identified as a female and the female as a male. This corresponds to a classification error.
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